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This book approaches questions of designing experiments and analyzing data from the per-
spective of building and comparing models. As such, much of the emphasis pertains to using 
sample data to make inferences about the population. In this respect, the goal of data analysis 
is typically to decide whether the inclusion of certain effects in a statistical model signifi-
cantly improves the model. However, this begs the question of what effects are considered 
as possible candidates for inclusion in the first place. The answer to this question inevitably 
hinges much more on knowledge of the subject area than on statistics. Nevertheless, there 
are certain statistical principles of model formulation that can help guide a researcher’s 
thought processes about choosing potential effects to include in a model. The purpose of 
this tutorial is to provide a brief introduction to these general principles. We approach these 
principles through consideration of the consequences of mistakenly excluding relevant vari-
ables or including irrelevant variables. In a very general sense, as a researcher contemplates 
possible candidate effects (i.e., predictor variables) to include in a model, is it better sta-
tistically to think small or large? Is leaving out relevant effects more or less problematic 
than including irrelevant effects? From a narrower statistical perspective, should our full 
model contain only the effects of specific theoretical interest, or might there be advantages 
to including additional effects even if we are not directly interested in them? Even though we 
should emphasize that data analysis should be driven primarily by research questions (and 
not the other way around), nevertheless we believe that an understanding of the principles 
we present in this tutorial may lead to more informed choices of how best to formulate and 
build models, which in turn will lead to better answers to theoretical and practical questions 
in behavioral science research.

Our intent in writing this tutorial is to present the material in such a way that it can be 
read at any point after Chapter  3. Reading this tutorial immediately after Chapter  3 can 
ideally provide a framework for understanding how and why more complex models are 
developed throughout the remainder of the book. Alternatively, reading this tutorial after 
having read all of Chapters 1 through 16 can ideally provide a synthesis and closure for the 
“big picture” inherent throughout the book and thus allow readers to be certain they see the 
“forest amidst the trees.” We leave this choice to the discretion of instructors, students, and 
other readers.

Tutorial 4

A Brief Primer of Principles of 
Formulating and Comparing Models
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FORMULATING MODELS

We saw near the beginning of Chapter  3 that the general form of a statistical model can be 
expressed as the following.

observed value sum of effects sum of effects

on dependent = of “allowed-for” + of other

variable factors factors

This is sometimes written more succinctly as

data = fit + error,

or as

observed = predicted + error.

Regardless of which way we express the general idea of a statistical model, we must decide 
what effects to include in the model and what other effects to exclude. By implication, any 
effects not explicitly included in the model become components of the error term.1 At first 
glance, it might seem that the proper approach would be to include “everything” in our 
model, because it seems natural that to believe that “error” must be bad, so we should do as 
much as possible to avoid error in our model. While this perspective is not entirely wrong, 
it is not necessarily entirely right either. The first problem with this mind-set is that we 
typically do not know what “everything” even means. If we already knew with certainty 
all of the effects that truly influence our dependent variable, we would probably not need 
to conduct a study. In reality, there is an immediate risk that we may end up including 
some effects that unbeknownst to us are unnecessary, and at the same time, no matter 
how diligent we are, we will probably omit some other effects that are truly relevant. 
A  second problem is yet more practical. Namely, even if we could identify all relevant 
effects, it would usually be impractical to measure all of them and include them in a single  
study.

A natural alternative to including “everything” in the model might be to include only the X 
variables of specific research interest. For example, we might be able to express our hypothesis 
in terms of a single X variable (say X1) and Y. It would seem reasonable in this situation to think 
of a very simple model—namely, a model that included only X1 as a predictor of Y. In fact, in this 
situation, it may seem rather unnecessary even to think in terms of a model. Instead, why not see 
whether X1 and Y are in fact related. However, we will see later in the tutorial that even in this 
seemingly simple situation, there may be reasons to think in terms of models and that doing so 
will sometimes reveal reasons for including other X variables in our model whether or not they 
are a central part of our research question.

The main purpose of this tutorial is to consider several related questions: (1) How can we 
decide whether a variable is relevant for including in a statistical model? (2) What are the conse-
quences of omitting a relevant variable? (3) What are the consequences of including an irrelevant 
variable?
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RELEVANCE OF PREDICTOR VARIABLES

To understand whether a particular effect is relevant, it is helpful to return to our basic model 
formulation from Chapter 3. There we saw that we can write the general case of the univariate 
general linear model with p predictor variables (not counting the intercept) as

	 Yi = β0X0i + β1X1i + β2X2i + β3X3i + … + βpXpi + εi.	 (3.1, repeated)

Before proceeding, we will mention a word about notation. This tutorial discusses model for-
mulation in terms of X variables and corresponding β coefficients. However, the principles we 
present here also apply if we write our model in terms of effect parameters such as

	 Yij = μ + αj + εij.	 (3.59, repeated)

Tutorial 3 describes the relationship between these two formulations in more detail, but for our 
purposes here, it suffices to say that we can think of an effect in terms of one or more X variables.

At least in principle, it is straightforward to state whether any particular variable is relevant 
to the model shown in Equation 3.1. Specifically, any variable with a nonzero population β coef-
ficient is part of the “fit” of the model. By implication, any variable with a zero β coefficient is not 
really part of the “fit” and thus belongs in the error term of the model. Thus, if our goal is to build 
a complete model for Y, we should in principle include all X variables with nonzero β coefficients 
and exclude all X variables with zero β coefficients.2 We could debate how well this describes the 
typical goal of a research program, but for our purposes here, it is important to be sure we under-
stand at least in principle what determines whether a population β coefficient is zero or nonzero.

For example, how would we determine whether β1 in the model shown in Equation 3.1 is zero 
or nonzero? Although in practice we might use sample data in an attempt to answer this question, 
for the moment, we will concentrate on understanding what it means to say that the population 
value itself is zero. To arrive at this understanding, we need to consider an alternative model for 
Y, namely a model that omits X1. We could write such a model as

	 Yi = β0X0i + β2X2i + β3X3i + … + βpXpi + εi.	 (1)

This model could be used to obtain a predicted Y score for every individual i. We will denote these 
predicted scores from this model as ˆ )1(−iY . The −1 term in parentheses serves as a reminder that 
we have omitted X1 from our model. Notice that we could write the error in prediction for indi-
vidual i from this model as ( )1ˆ −−i iY Y . We can then state that the population value of β1 is zero 
if and only if X1 and the error ( )1ˆ −−i iY Y  are uncorrelated in the population. In other words, if X1 
does not improve the prediction of Y after we use the remaining p − 1 X variables as predictors, 
then the β coefficient for X1 is zero, and X1 is irrelevant to the model. On the other hand, if X1 
does improve the prediction of Y after we use the remaining p − 1 X variables as predictors, then 
the β coefficient for X1 is nonzero, and X1 is relevant to the model.

In many situations, it is natural to think of the correlation between X1 and the error ( )1ˆ −−i iY Y  
in terms of the correlation between X1 and Y itself. From a practical perspective, it often seems 
plausible that variables that correlate with the error ( )1ˆ −−i iY Y  will also correlate with Y, and 
vice versa. While this may frequently be true in behavioral science data, it is not a mathematical 
necessity. For example, X1 and Y could be highly correlated with one another, and yet after we 
predict Y from the other X variables, the relationship between Y and X1 has vanished in the sense 
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that ( )1ˆ −−i iY Y  and X1 are uncorrelated. To understand how this might happen, suppose we are 
interested in understanding differences among reading ability in elementary school children. It 
is a virtual certainty that among all elementary school children, taller children read better than 
younger children. Thus if we let Y represent reading ability and X1 represent height, Y and X1 are 
undoubtedly correlated. But the fact that this correlation is nonzero does not necessarily mean 
that we should include height in our model of reading ability, because the correlation does not 
necessarily imply that the β coefficient for height predicting reading ability is nonzero. To see 
why, suppose we have also measured age, which we will denote as X2. Once we predict Y from 
X2, the subsequent errors will in all likelihood be uncorrelated with height. Thus even though 
height and reading ability are correlated, height does not improve the prediction of reading ability 
after we remove the predictability of age. Thus, in this scenario, β1 is zero even though the cor-
relation between X1 and Y is nonzero, and we would not need to include X1 in the model despite 
its correlation with Y. It turns out that the opposite pattern is also possible. In other words, it is 
possible that X1 and Y are uncorrelated, and yet a relationship emerges between ( )1ˆ −−i iY Y  and 
X1. In this situation, X1 is said to be a suppressor variable. Thus, from a mathematical perspective, 
we cannot judge the relevance of a predictor in a model simply on the basis of its correlation with 
the dependent variable. Even so, in some situations contemplating likely correlates of Y may be 
a useful way to assemble candidate X variables for inclusion in a model.

Of course, if we have measured Y as well as all p of the X variables, we can use sample data to 
test whether we need to include X1 in our model (for example, we could test whether the regres-
sion coefficient is statistically significant). But the purpose of our discussion here is more subtle. 
How should we decide whether to measure X1 in the first place? What variables are candidates 
for inclusion in our statistical model? It is unlikely that we can measure “everything” and then 
pick and choose once we have obtained our data, and even if we could measure “everything,” 
picking and choosing is typically not straightforward because of such complications as perform-
ing multiple tests (discussed at length in Chapter 5) and concerns about inappropriate levels of 
statistical power.

So how do we decide what variables to measure in our study? Should we measure X1 or should 
we forgo it? If there were a simple answer to this question, science could presumably follow a 
simple recipe. In reality, there is no simple answer. However, there are a variety of reasons we 
might decide to measure a specific variable. Most obvious of these is that this variable is the cen-
ter of our research attention. In fact, maybe all we care about is whether X1 and Y are related to 
one another. Do we really need to worry about measuring any other variables besides X1 and Y?

CONSEQUENCES OF OMITTING A RELEVANT PREDICTOR

Suppose for simplicity that our research question involves only Y and X1. When, if ever, should 
we include other predictor variables in our model? If all other potential predictor variables would 
have β coefficients of zero, there would be no additional relevant predictors. We will consider the 
role of such predictor variables in the next section. Here we will instead consider the possibil-
ity that one or more other X variables in addition to X1 might have nonzero β coefficients in the 
population model for Y. Does the existence of such additional X variables imply that they should 
not only be measured but also included in our statistical model and ensuing data analysis? We 
will see that the answer to this question depends in no small part on how one interprets the word 
“should” in the question of whether these additional variables should be included.

To begin to answer this question, we will consider the simplest case of only one additional X 
variable, which we will denote as X2. The principles we illustrate in this simple case generalize 
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in a straightforward fashion to the more complicated case of multiple X variables. Suppose we 
are planning a study investigating the relationship between X1 and Y. Further suppose we suspect 
that both X1 and X2 may be relevant predictors (as defined in the previous section) in a model of 
the form:

	 Yi = β0X0i + β1X1i + β2X2i + εi.	 (2)

What are the consequences of omitting X2 from this model? In other words, what are the conse-
quences of assessing the relationship between X1 and Y in a model that does not include X2, such 
as

	 Yi = β0X0i + β1X1i + εi.	 (3)

How important is it to include X2 in our model? Might there be reasons to exclude X2 even 
though we suspect that its regression coefficient is nonzero? All of these questions fall under 
a general study of specification error, which refers to the problem (typically unknown to the 
researcher) whereby the model is not correctly specified. What are the consequences of speci-
fication error?

We will consider the answers to these questions according to two criteria. First, does omitting 
X2 affect the value we will expect to observe for 1̂β ? In other words, does omitting X2 tend to 
produce an estimate of β1 that is either systematically too small or too large, or on average is our 
estimate still likely to be correct? Second, does omitting X2 affect how precisely we can estimate 
β1? For example, if we were to form a confidence interval for β1, will the width of the interval 
tend to be different if we omit X2 instead of including it in our model? If so, statistical power will 
also be affected, so we will say more about this as well momentarily.

In order to explore the effects of excluding X2 on our two criteria, we need to develop expres-
sions for a regression coefficient and its confidence interval. Although it is possible to write an 
expression for an estimated regression coefficient in the general case of p predictors, we will 
keep things simple by considering only 1 or 2 predictor variables. First, if X1 is the only predictor 
as in Equation 3, the estimated regression coefficient for X1 can be written as

	
1

1 1β̂ = YS
Y S X

r , 	 (4)

where rY1 is the correlation between Y and X1, and sY and sX are the standard deviations of Y and 
X, respectively. When both X1 and X2 are included in the model, the estimated regression coef-
ficient for X1 becomes

	
1

1 2 12
1 2 2

12

ˆ
1

β
−

⋅

  =   
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YSY Y
S X

r r r
r , 	 (5)

where the 1.2 subscript for 1̂β  emphasizes that this is the coefficient for X1 with X2 also included 
in the model. The other new terms in Equation 5 that did not appear in Equation 4 are rY2, which 
is the correlation between Y and X2, and r12, which is the correlation between X1 and X2.

Of special interest to us in the remainder of this tutorial will be the extent to which the regres-
sion coefficient for X1 excluding X2 is different from the regression coefficient for X1 including 
X2. However, this is simply the difference between 1̂β  in Equation 4 and 1 2β̂ ⋅  in Equation 5. After 
some algebraic manipulation, we can write this difference as
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We can simplify this expression yet further because the term in the second set of parentheses 
turns out to be closely related to 2 1β̂ ⋅ . In particular, the formula for the regression coefficient for 
X2 when X1 is in the model is just the same as the formula for the regression coefficient for X1 
when X2 is in the model, except we need to reverse all subscripts for X1 and X2. Incorporating this 
modification into Equation 5, we can write 2 1β̂ ⋅  as

	 ( )
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Substituting from Equation 7 into Equation 6 and performing a bit of algebraic manipulation 
allows us to rewrite the expression for the difference between regression coefficients as

	 ( ) 2

1
1 2 1 12 2 1

ˆ ˆ ˆβ β β⋅ ⋅
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 

S X
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r . 	 (8)

We will examine Equation 8 and its implications in a moment. In particular, we will often be 
interested in finding conditions under which we might expect the difference between the two 
coefficients for X1 to equal zero. Before pursuing this question, however, we will first develop 
some necessary information on confidence intervals.

A general expression for a confidence interval can be written as

estimate ± (critical value)(standard error).

In the specific case of a regression coefficient, we can rewrite this expression as

	 1 2 3
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In the general case of p predictor variables, the critical value comes from a t distribution with 
N – p − 1 degrees of freedom. The standard error of 1̂β  depends on five values: (1) the sum of 
squares of Y, (2) the sum of squares of X1, (3) the proportion of variance in Y explained by the p 
predictor variables, (4) the proportion of variance in X1 explained by the remaining p − 1 predic-
tor variables, and (5) the degrees of freedom.

Now we are ready to return to our questions of how omitting X2 will affect our conclusions 
about X1. Implicit in Equation 8 is the fact that the effect of excluding X2 depends in part on 
whether X1 and X2 are correlated with one another. We will begin with the case where the two 
predictor variables are correlated and then consider what is different if they are not correlated.

Correlated Predictors

When the population correlation between X1 and X2 is nonzero, excluding a relevant X2 vari-
able from our model leads to a biased estimate of the regression coefficient for X1. To see why, 
return to Equation 8. If both r12 and 2 1β̂ ⋅  are nonzero, the coefficient for X1 when X2 is included 
in the model will be different from the coefficient for X1 when X2 is omitted. The same principle 
extends from a sample to the population. Thus when the true model for Y includes X2, and X2 
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correlates with X1, we need to include X2 in the model in order to obtain an unbiased estimate 
of the true population regression coefficient for X1. Otherwise, even in a very large sample, our 
estimated value of β1 is likely to be inaccurate. More generally, this principle applies to the case 
of p predictor variables. If we hope to obtain an unbiased estimate of the true population regres-
sion coefficient for X1, we must include in the model all variables that correlate with X1 and also 
have nonzero regression coefficients in the model for Y. This illustrates the difficulties facing 
researchers who are unable to assign individuals to groups at random, because the number of 
variables possibly impacting Y and correlated with X1 sometimes seems virtually boundless in 
the behavioral and social sciences.

In this case, excluding X2 from the model also influences the width of the confidence interval 
we might form for β1. However, the width of the interval usually becomes a secondary consider-
ation when the center of the interval is likely to be inaccurate because of bias in the estimation of 
β1. For this reason, we will not pursue considerations of width further in this case.

Examples

Chapter 9 contains an extensive discussion of the role of a covariate in adjusting group differ-
ences in the absence of random assignment to groups. For example, Figure 9.4 and the accom-
panying verbal description explain why adjusted differences that arise by including the covariate 
in the model may be different from unadjusted differences obtained when the covariate is not 
included in the model. Specifically, in accordance with Equation 8, adjusted differences will dif-
fer from unadjusted differences to the extent that both: (a) the covariate is related to the depen-
dent variable, and (b) groups have different means on the covariate (because this implies that 
the covariate is correlated with group membership). Another example of this general principle 
occurs in Chapter 7, where we discuss unequal n designs with more than one factor. In so-called 
nonorthogonal designs, the variables representing the main effects and interaction are correlated 
with one another. To the extent that main effects and an interaction are non-null, the estimates 
we obtain for an effect will depend on what other effects we include in our model. In particular, 
Chapter 7 presents three types of sums of squares (literally Type I, Type II, and Type III) of 
possible relevance in factorial designs. Each of these types of sums of squares corresponds to a 
specific question, and we may get different answers to these questions even with the same data 
in an unequal n factorial design.

Uncorrelated Predictors

When the population correlation between X1 and X2 is zero, excluding a relevant X2 variable 
from our model does not affect the expected value of 1̂β . Notice that this is a very different 
outcome from the previous situation we discussed, where X1 and X2 were correlated. To see why 
the outcome is so different now, return to Equation 8. If r12 is zero, the coefficient for X1 when X2 
is included in the model will be equal to the coefficient for X1 when X2 is omitted, even if 2 1β̂ ⋅  is 
nonzero. Of course, in a sample, r12 will typically not be exactly zero even if ρ12 does equal zero. 
However, when ρ12 equals zero, the long-run average value of 1̂β  will equal the long-run average 
value of 1 2β̂ ⋅ . Said another way, in a very large sample, 1̂β  and 1 2β̂ ⋅  will essentially be equal to 
one another. On average, we will tend to obtain the correct value for the regression coefficient 
for X1 even if we leave X2 out of our model. Thus, although the true model for Y includes X2, if 
X2 does not correlate with X1, we do not need to include X2 in the model in order to obtain an 
unbiased estimate of the true population regression coefficient for X1.

When can we be reasonably certain that some potential predictor X2 will not correlate with 
our predictor variable of interest X1? The one situation where we can typically develop a strong 
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theoretical argument that X2 will not correlate with X1 is when we have formed experimen-
tal groups through random assignment, and X1 represents membership in the groups we have 
formed. From this perspective, the primary benefit of random assignment is that it ensures (in a 
probabilistic sense) that no other X variables can correlate with X1. Thus the beauty of random 
assignment is that, in this respect, it relieves us of the responsibility to identify additional predic-
tor variables to include in our model in order to obtain an unbiased estimate of the regression 
coefficient for our predictor of main theoretical interest. At least in the long run, we can expect to 
obtain the same estimated effect of X1 on Y regardless of whether we include other predictors in 
the model whenever we have randomly assigned individuals to levels of X1.

The previous discussion might seem to imply that it makes no difference whatsoever whether 
we include X2 or exclude X2 in our model when X2 is uncorrelated with Y. Although this is true in 
the long run, it is not necessarily true in general. To begin to understand why, you need to realize 
that so far our focus has been on the average value we would expect to obtain for 1̂β . Suppose, 
however, that one approach might yield values for 1̂β  that range from 2 to 12 from sample to 
sample, while a second approach yields values that range from 6 to 8. Clearly, we would prefer to 
use the second approach to estimate the population value of β1. Although both approaches appear 
to produce an average value of 7, the second approach is preferable because estimates vary less 
from sample to sample, and thus any given sample is likely to provide a more precise estimate 
of the population parameter. Another way of thinking about this is that the second approach will 
provide narrower confidence intervals than the first approach.

What does this have to do with including or excluding X2 from our model? We can compare 
the likely width of confidence interval estimates for the regression coefficient for X1 in the model 
with X2 versus the model without X2. If there are reasons to expect one of these intervals to be 
narrower than the other, that will provide grounds for preferring one model over the other. To 
make this comparison, we need to return to Equation 9. When X1 is the only predictor variable in 
the model, we can write this equation more simply as   
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Similarly, when X2 is included in the model, Equation 9 becomes
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We can use Equations 10 and 11 to see that the ratio of the width of the confidence interval 
excluding X2 to the width including X2 will be given by
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What does Equation 12 tell us about the widths of the two confidence intervals? The first term—
i.e., the ratio of critical t values—will always be smaller than 1.0, but will be very close to 1.0 
unless N is very small. For example, even if the total sample size N is only 20, the ratio of critical 
t values is between 0.99 and 1.00. For larger values of N, the ratio is even closer to 1.0. Thus 
there is a slight advantage for the interval excluding X2, but the advantage will be of no practi-
cal value unless N is very small. Now let’s jump to the third term (we will consider the second 
term in a moment). The third term will tend to be very close to 1.0 with random assignment. 
In fact, when X1 and X2 represent two manipulated factors, it will usually be the case that their 
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correlation is exactly zero. Now let’s consider the second term. How will the numerator compare 
to the denominator? There is a potential trade-off here. The N − 3 portion of the numerator will be 
smaller than the N − 2 portion of the denominator, so this part of the ratio is less than 1.0. How-
ever, to the extent that X2 is a relevant predictor of Y, the multiple correlation predicting Y from 
both X1 and X2 will be larger than the correlation predicting Y from X1 alone. Thus this portion 
of the denominator will tend to be smaller than the comparable portion of the numerator, which 
means that the ratio will exceed 1.0. Thus one portion of the ratio will be less than 1.0, while 
another portion will tend to be greater than 1.0. What can we say about the ratio as a whole? After 
some algebraic manipulation, it is possible to show that the middle term in Equation 12 will be 
less than 1.0 if and only if

	 r
R N
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.	 (13)

We can simplify this by realizing that the left side of the inequality is identical to the observed F 
value comparing a model with both X1 and X2 as predictors to a model with only X1 as a predic-
tor, when X1 and X2 are uncorrelated. Thus, letting Fβ 2

 denote this F statistic, we can say that the 
middle term of Equation 12 will be less than 1 if and only if

	 Fβ 2
< 1 . 	 (14)

In other words, when X1 and X2 are uncorrelated and N is large enough (say 20 or more) so that 
the ratio of critical t values is essentially 1, excluding X2 will yield a more precise interval than 
including X2 if and only if the F statistic associated with X2 is less than 1. To see why this matters, 
we need to realize that if the population coefficient for X2 is zero, we would expect the F value for 
X2 to exceed 1 roughly half the time and be less than 1 the other half of the time. However, to the 
extent that the coefficient for X2 is nonzero, its F statistic will tend to be larger than 1, in which 
case including it in our model will lead to a more precise interval for β1.

So where does all of this leave us? Consider an example where the correlation between Y and 
X1 is .40, the correlation between Y and X2 is .50, and X1 and X2 are uncorrelated. It follows that 
the squared multiple correlation predicting Y from both X1 and X2 then equals .41, in which case 
the second term in Equation 12 will equal 1.19 if the total sample size is large enough that the 
square root of the ratio of N − 3 to N − 2 can be assumed to essentially equal 1.0. This means that 
in this scenario, a confidence interval formed for β1 without including X2 in the model will tend 
to be approximately 20% wider than an interval formed while including X2 in the model. Thus 
even though X2 is unrelated to X1, including it in the model improves our ability to estimate the 
coefficient for X1 precisely. Including X2 helps us because X2 improves the predictability of Y, and 
thus reduces error variance in the model.

There are two practical implications of this discussion:

1.	 When X2 is uncorrelated with X1, we do not need to include it in our model in order to obtain 
an unbiased estimate of the regression coefficient for X1.

2.	 When X2 is imcorrelated with X1, including X2 in the model can increase the precision with 
which we estimate the coefficient for X1 to the extent that X2 correlates with Y. So although 
we do not have to include X2 in our model, there nevertheless may be definite advantages to 
doing so. From the perspective of hypothesis testing, a narrower confidence interval leads to 
increased statistical power, so we could say that including X2 in our model in this scenario 
increases the power of our test for X1.
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Examples

A classic example of this situation occurs in Chapter 9, where including a covariate in the model 
for Y can sometimes greatly increase the power to detect a treatment effect (represented by X1) 
when we have randomly assigned individuals to groups. Notice that as long as we have random 
assignment, we do not need to include the covariate in our model in order to obtain an unbiased 
estimate of the treatment effect. For this reason, many researchers would overlook the option to 
add the covariate to the model. However, to the extent that the covariate is related to the depen-
dent variable, failing to include it in the model misses an opportunity to explain additional vari-
ance and thus increasing power for detecting a treatment effect while also increasing precision 
to estimate the magnitude of the effect. Another example occurs in the within-subjects designs 
we present in Chapters 11 through 14, where we (explicitly or implicitly) include a parameter 
for each subject in the model. For example, the full model we present in Chapter 11 for a single-
factor within-subjects design is

	 Yij =μ + αj +πi + εij,	 (11.22, repeated)

where πi, is an effect associated with person (i.e., subject) i. Notice how this model is different 
from the corresponding full model we developed for a single-factor between-subjects design:

	 Yij =μ + αj + εij.	 (3.59, repeated)

The only difference between these models is that the model for within-subjects designs includes 
extra predictors to reflect potential differences between individual subjects. As long as there are 
no missing data, variables representing group differences will be uncorrected with variables rep-
resenting subject effects. Thus we could omit the subject variables and still obtain an unbiased 
estimate of group differences. However, to the extent that the subject variables are predictive of Y 
(i.e., there are systematic individual differences between subjects), including these extra predic-
tors will (as shown in Equations 12 and 14) increase the precision of our estimated group differ-
ences. Indeed, this is precisely why for a fixed number of data points, within-subjects designs are 
usually more powerful than between-subjects designs.

CONSEQUENCES OF INCLUDING AN IRRELEVANT 
PREDICTOR

The implication of the previous section might seem to be to include everything in the “kitchen 
sink” in our model. After all, it seems there can be advantages to including an additional predictor 
whether or not it is correlated with X1, the predictor we have presumed to be of particular theoret-
ical interest. However, you need to realize that the previous section assumed throughout that the 
additional predictor X2 was a relevant predictor. In other words, we assumed in all of the previous 
section that the regression coefficient for predicting Y from X2 was nonzero. In actual research 
practice, however, we will typically not know before we collect data whether our X2 variable is 
in fact a relevant predictor. Suppose we thought that X2 would be relevant, but unbeknownst to 
us, in reality, X2 is irrelevant. In other words, suppose we thought that X2 had a nonzero regres-
sion coefficient, but in actuality the population value of the regression coefficient for X2 is zero. 
Remember that an “irrelevant” predictor is one whose population regression coefficient equals 
zero. What are the consequences of including an irrelevant predictor variable in our model?
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As we did in our consideration of a relevant X2 variable, we will consider the effects of includ-
ing an irrelevant predictor for two separate scenarios. First, we will consider a situation where 
the irrelevant predictor correlates with X1. Second, we will consider a scenario where X2 does not 
correlate with X1. Fortunately, in both cases, we will be able to rely on many of the formulas we 
developed in the previous section.

Correlated Predictors

Suppose that X2 is correlated with X1, but that the regression coefficient for X2 predicting Y is 
zero with both X1 and X2 in the model. Will our estimated coefficient for X1 still be unbiased? The 
answer to this question follows immediately from reconsideration of Equation 8:
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When X2 is an irrelevant predictor, we would expect its regression coefficient 2 1β̂ ⋅  to equal zero, 
which means that we would expect the difference between 1 2β̂ ⋅  and 1̂β  to equal zero. Thus the 
estimated regression coefficient for X1 will be unbiased regardless of whether we include X2 in 
our model.

In the long run, it does not matter whether we include an irrelevant correlated predictor in 
our model. However, what about the possible effects in any particular sample? To address this 
question, we need to consider the confidence interval for the regression coefficient of X1. Recall 
from Equation 12 that the ratio of the width of the confidence interval excluding X2 to the width 
including X2 will be given by
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Once again, the ratio of critical t values can be thought of as equal to 1.0 except in very small 
samples. In this case, it turns out that we would expect the second term to be close to 1.0 as well. 
The reason is that now X2 does not add to the predictability of Y. However, the third term will not 
equal 1.0 to the extent that X1 and X2 are correlated. For example, suppose X1 and X2 correlate .50 
with one another. In this case, the third term equals .87, which means that the confidence interval 
for β1 excluding X2 will be 87% as wide as the interval we would obtain if we included X2. Or, 
equivalently, by including X2 in the model, we have increased the likely width of our confidence 
interval by 15% (i.e., 100 times the reciprocal of .87). Thus if we could realize that X2 is irrel-
evant, we should exclude it from our model, because its inclusion decreases the precision with 
which we can estimate the regression coefficient for X1.

Example

It might seem difficult to come up with an example of a situation where we would include an irrel-
evant predictor. Of course, if we could know with certainty that a predictor is in fact irrelevant, 
we would exclude it. The problem is that in reality we typically cannot know whether a predictor 
is truly irrelevant. And keep in mind that omitting a relevant predictor that is correlated with X1 
yields a biased estimate of β1. For this reason, we may prefer to include some predictor X2 in our 
model if it correlates with X1, even if there is some reasonable chance that X2 may be irrelevant. 
Indeed, this is exactly the logic in unequal n factorial designs in Chapter 7. Specifically, the Type 
II sum of squares for a main effect is calculated by omitting the interaction from the model. This 
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is unquestionably the best approach if the interaction (which we can think of here as X2) is truly 
irrelevant in the population. In an unequal n design, the predictor representing the interaction will 
typically correlate with the predictor representing a main effect, so we can increase precision by 
excluding the interaction from our model when it is irrelevant. However, the rub here is that in 
so doing, we are running a risk that we have in fact excluded a relevant correlated predictor from 
our model, in which case we saw in the previous section that our estimate of the main effect will 
be biased. Most statisticians have come to believe that it is generally preferable to sacrifice some 
precision in order to assure an unbiased estimate, in which case the interaction term would be 
included in the model. However, if there is strong evidence (perhaps based on a combination of 
data and theory) that the interaction is truly zero, greater power and precision can be obtained for 
the main effect by excluding the interaction term from the model.

Uncorrelated Predictors

Suppose that X2 is uncorrelated with X1 and that the population regression coefficient for X2 pre-
dicting Y is zero with both X1 and X2 in the model. Notice in this case that X2 is unrelated to any 
other variables in the system. As such, X2 is literally random noise. Fortunately, this is precisely 
what the error term of the model is designed to accommodate. As such, the likely intuition that 
it should not make much difference whether we include or exclude X2 in this case is basically 
correct. Even here, however, there is a theoretical difference, and that theoretical difference can 
become a practical difference when we realize that in actual research the number of such irrel-
evant variables we may be contemplating could be much larger than 1.

We can immediately see from Equation 8 that omitting an irrelevant uncorrelated predictor 
does not bias our estimate of the regression coefficient of X1. Once again, in the long run or in 
very large samples, it will not matter whether we include or exclude this type of X2 in our model.

Including or excluding X2 in the model does have some effect on the precision with which we 
can estimate X1, but the effect is typically quite small. Notice that we would expect both the second 
and third terms in Equation 12 to be essentially 1.0 when X2 correlates with neither Y nor X1. In 
particular, based on Equation 14, we can conclude that roughly half the time the second term 
will be larger and half the time the second term will be smaller if we include X2. Thus the only 
systematic effect of including or excluding X2 manifests itself in the critical value. As we have 
already seen, this effect can be ignored unless sample size is very small or unless the number of 
additional variables we might include becomes large. Not surprisingly, it is preferable to exclude 
variables that have nothing to do with either Y or X1, but their inclusion causes little harm when 
the number of such variables is small relative to sample size.

SUMMARY

It is hardly a surprise to learn that relevant predictors should be included in a model and that irrel-
evant predictors should be excluded. However, understanding the principles behind this conclu-
sion may be less intuitive. In particular, understanding the consequences of mistakenly excluding 
a relevant predictor as compared to including an irrelevant predictor may be useful in guiding 
decisions about what variables to measure and include in a statistical model.

Table T4.1 provides a summary of the principles we have developed in this tutorial. Implicit in 
the table is the suggestion that in general, it is most important to include variables that are likely 
to have nonzero coefficients and to correlate with other variables of interest. On the other hand, 
the variables most important to exclude are those that are correlated with variables of interest but 
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whose coefficients are zero. Of course, in practice, the difficulty with this distinction is that it is 
typically difficult to know whether the coefficient for a predictor is truly zero or nonzero until we 
have included it in the model, at least provisionally. Even then, the decision may not be obvious, 
especially if statistical power may be lacking.

Another implication of the table is the enormous benefit of random assignment to treatments. 
When our goal is to assess the effect of a variable whose levels are determined by random assign-
ment, we know (probabilistically) that we are in the second row of Table T4.1. However, the 
consequences of mistakenly excluding or including a variable are usually much less in the second 
row of the table than in the first row. Thus random assignment offers a degree of protection rarely 
available in nonrandomized studies.

Finally, we will close with six additional points. First, it is important to realize that X 2
2  is 

not the same variable as X2. In other words, at least in theory, it may not be enough to include 
X2 in our model because it may relate nonlinearly to Y. For example, in order to obtain an 
unbiased estimate of β1, it may be necessary to include both X2 and X 2

2  in the model. Obvi-
ously, this can create sizable complications, because even if we are so insightful as to know 
all of the relevant variables, our work is still not finished because we also have to know how 
each of them relates to Y. Second, a related type of effect is an interaction effect, initially 
described in Chapter 7. An interaction effect can be thought of as the product of two or more 
variables with one another, such as X1X2. Notice from this perspective that X 2

2  could be 
conceptualized as X2 interacting with itself. In fact, consistent with the idea of an interaction 
we develop in Chapter 7, an effect due to X 2

2  suggests that the effect of X2 on Y changes 
depending on the value of X2 itself. Readers interested in further similarities between X1X2 
and X 2

2 , and subsequent implications for interpreting interactions and higher-order trends, 
are advised to read Lubinski and Humphreys’s (1990) excellent article as well as MacCallum 
and Mar’s (1995) follow-up. Third, it is also important to realize that an observed score on 
X2 will frequently be different from the corresponding true score on X2. To the extent that Y 
depends on the true score of X2, but we include an imperfectly measured version of X2 in our 
model, we have not completely succeeded in including the truly relevant predictor (Figure 9.7 
and the accompanying discussion in Chapter 9 provides an illustration of this problem in the 
context of analysis of covariance). Structural equation modeling (also referred to as latent 
variable modeling) provides a viable solution to this dilemma. Many books and articles have 
been written on this topic. Good introductions are available in such sources as Bollen (1989), 
Kaplan (2009), and Raykov and Marcoulides (2006). Fourth, we need to point out an addi-
tional complication when X2, the variable we may mistakenly exclude, represents a random 
effects factor. As we discuss at some length in Chapter 10, the presence of a random effects 
factor often implies the need for an error term that takes this factor into account, even if our 
statistical test or interval pertains to a different factor (i.e., predictor) in the model. Thus omit-
ting relevant random effects factors can have especially unfortunate consequences. Fifth, we 
have described the goals of model building and the consequences of misspecifying models. 
These principles are exemplified at various points throughout the body of the text. However, 
our focus is primarily on the inclusion or exclusion of design factors, especially in random-
ized studies. As we have seen, issues of including or excluding predictors are often less com-
plex in randomized designs. A broader discussion emphasizing observational studies lacking 
random assignment is a highly complex topic requiring a book unto itself. Fortunately, we can 
highly recommend Harrell (2015) for readers who are interested in such a book-length treat-
ment. Sixth, this entire tutorial could be thought of as exemplifying the role of parsimony in 
building statistical models for data. In this respect, it seems fitting to close with a quote from 
Einstein: “Everything should be made as simple as possible, but not simpler.”
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NOTES

1.	 More technically, it could be said that the part of any excluded effect that does not correlate with effects 
already included in the model becomes a component of the error term.

2.	 It is tempting to assume that an effect that correlates with Y should have a nonzero regression coeffi-
cient. However, we will see momentarily that this is not necessarily true. An effect can correlate with Y 
and yet still have a regression coefficient of zero. Similarly, it might seem that an effect with a nonzero 
regression coefficient must correlate with Y. However, as we describe later in this tutorial, it is possible 
for a predictor variable to have a nonzero regression coefficient, even though the variable fails to cor-
relate with Y. Thus, in principle, identifying effects with nonzero regression coefficients involves more 
than identifying variables that can be expected to correlate with Y.
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TABLE T4.1  
EFFECTS OF EXCLUDING A RELEVANT VARIABLE OR INCLUDING 

AN IRRELEVANT VARIABLE

Excluding a

Relevant X

Including an

Irrelevant X

Correlated with X1, predictor 
of theoretical interest

Biased estimate of β1 Unbiased estimate of β1, but estimate 
is less precise than if irrelevant X were 
excluded

Uncorrelated with X1, 
predictor of theoretical 
interest

Unbiased estimate of β1, but 
estimate is less precise than if 
relevant X were included

Unbiased estimate of β1, but estimate 
is slightly less precise than if 
irrelevant X were excluded




